大秀直播

大秀直播 Blogs

大秀直播 Newsroom

Posts Tagged 'data center interconnect'

  • October 07, 2025

    Faster, Farther and Going Optical: How PCIe Is Accelerating the AI Revolution

    By Annie Liao, Product Management Director, ODSP Marketing, 大秀直播

    For over 20 years, PCIe, or Peripheral Component Interconnect Express, has been the dominant standard to connect processors, NICs, drives and other components within servers thanks to the low latency and high bandwidth of the protocol as well as the growing expertise around PCIe across the technology ecosystem. It will also play a leading role in defining the next generation of computing systems for AI through increases in performance and combining PCIe with optics.

    Here’s why:

    PCIe Transitions Are Accelerating

    Seven years passed between the debut of PCIe Gen 3 (8 gigatransfers/second—GT/s) in 2010 and the release of PCIe Gen 4 (16 GT/sec) in 2017.1 Commercial adoption, meanwhile, took closer to a full decade2

    More XPUs require more interconnects

    Toward a terabit (per second): PCIe standards are being developed and adopted at a faster rate to keep up with the chip-to-chip interconnect speeds needed by system designers.?

  • April 17, 2025

    Advancing Optics with a Hybrid Route to TIAs

    By Nicola Bramante, Senior Principal Engineer

    Transimpedance amplifiers (TIAs) are one of the unsung heroes of the cloud and AI era.

    At the recent OFC 2025 event in San Francisco, exhibitors demonstrated the latest progress on 1.6T optical modules featuring 大秀直播 200G TIAs. Recognized by multiple hyperscalers for its superior performance, 大秀直播 200G TIAs are becoming a standard component in 200G/lane optical modules for 1.6T deployments.

    TIA

    TIAs capture incoming optical signals from light detectors and transform the underlying data to be transmitted between and used by servers and processors in data centers and scale-up and scale-out networks. Put another way, TIAs allow data to travel from photons to electrons. TIAs also amplify the signals for optical digital signal processors, which filter out noise and preserve signal integrity.

    And they are pervasive. Virtually every data link inside a data center longer than three meters includes an optical module (and hence a TIA) at each end. TIAs are critical components of fully retimed optics (FRO), transmit retimed optics (TRO) and linear pluggable optics (LPO), enabling scale-up servers with hundreds of XPUs, active optical cables (AOC), and other emerging technologies, including co-packaged optics (CPO), where TIAs are integrated into optical engines that can sit on the same substrates where switch or XPU ASICs are mounted. TIAs are also essential for long-distance ZR/ZR+ interconnects, which have become the leading solution for connecting data centers and telecom infrastructure.?Overall, TIAs are a must have component for any optical interconnect solution and the market for interconnects is expected to?triple to $11.5 billion by 2030, according to LightCounting.

  • March 17, 2025

    The evolution of AI interconnects

    By Nick Kucharewski, Senior Vice President and General Manager, Cloud Platform Business Unit, 大秀直播

    The rapid expansion in the size and capacity of AI workloads is significantly impacting both computing and network technologies in the modern data center. Data centers are continuously evolving to accommodate higher performance GPUs and AI accelerators (XPUs), increased memory capacities, and a push towards lower latency architectures for arranging these elements. The desire for larger clusters with shorter compute times has driven heightened focus on networking interconnects, with designers embracing state-of-the-art technologies to ensure efficient data movement and communication between the components comprising the AI cloud.

    A large-scale AI cloud data center can contain hundreds of thousands, or millions, of individual links between the devices performing compute, switching, and storage functions. Inside the cloud, there is a tightly ordered fabric of high-speed interconnects: webs of copper wire and glass fiber each carrying digital signals at roughly 100 billion bits per second. Upon close inspection there is a pattern and a logical ordering to each link used for every connection in the cloud, which can be analyzed by considering the physical attributes of different types of links.

    For inspiration, we can look back 80 years to the origins of modern computing, when John von Neumann posed the concept of memory hierarchy for computer architectures1. In 1945 Von Neumann proposed a smaller faster storage memory placed close to the compute circuitry, and a larger slower storage medium placed further away, to enable a system delivering both performance and scale. This concept of memory hierarchy is now pervasive, with the terms “Cache”, “DRAM”, and “Flash” part of our everyday language. In today’s AI cloud data centers, we can analyze the hierarchy of interconnects in much the same way. It is a layered structure of links, strategically utilized according to their innate physical attributes of speed, power consumption, reach, and cost.

    ?

    The hierarchy of interconnects

    This hierarchy of interconnects provides a framework for understanding emerging interconnect technologies and to assess their potential impact in the next generation of AI data centers. Through a discussion of the basic attributes of emerging interconnect technologies in the context of the goals and aims of the AI cloud design, we can estimate how these technologies may be deployed in the coming years. By identifying the desired attributes for each use case, and the key design constraints, we can also predict when new technologies will pass the "tipping point" enabling widespread adoption in future cloud deployments.

  • September 25, 2024

    大秀直播 COLORZ 800 Named Most Innovative Product at ECOC 2024

    By Michael Kanellos, Head of Influencer Relations, 大秀直播

    With AI computing and cloud data centers requiring unprecedented levels of performance and power, 大秀直播 is leading the way with transformative optical interconnect solutions for accelerated infrastructure to meet the rising demand for network bandwidth.

    At the ECOC 2024 Exhibition Industry Awards event, 大秀直播 received the Most Innovative Pluggable Transceiver/Co-Packaged Module Award for the 大秀直播? COLORZ? 800 family. Launched in 2020 for ECOC’s 25th anniversary, the ECOC Exhibition Industry Awards spotlight innovation in optical communications, transport, and photonic technologies. This recognition highlights the company’s innovations in ZR/ZR+ technology for accelerated infrastructure and demonstrates its critical role in driving cloud and AI workloads.

    大秀直播 COLORZ 800 Named Most Innovative Product at ECOC 2024

  • September 22, 2024

    Five Things to Know About the Future of Long Distance Optics

    By Michael Kanellos, Head of Influencer Relations, 大秀直播

    Coherent optical digital signal processors (DSPs) are the long-haul truckers of the communications world. The chips are essential ingredients in the 600+ subsea Internet cables that crisscross the oceans (see map ) and the extended geographic links weaving together telecommunications networks and clouds.

    One of the most critical trends for long-distancer communications has been the shift from large, rack-scale transport equipment boxes running on embedded DSPs often from the same vendor to pluggable modules based on standardized form factors running DSPs from silicon suppliers tuned to the power limits of modules.

    With the advent of 800G ZR/ZR+ modules, the market arrives at another turning point. Here’s what you need to know.?


    It’s the Magic of Modularity

    PCs, smartphones, solar panels and other technologies that experienced rapid adoption had one thing in common: general agreement on the key ingredients. By building products around select components, accepted standards and modular form factors, an ecosystem of suppliers sprouted. And for customers that meant fewer shortages, lower prices and accelerated innovation.

    The same holds true of pluggable coherent modules. 100 Gbps coherent modules based on the ZR specification debuted in 2017. The modules could deliver data approximately 80 kilometers and consumed approximately 4.5 watts per 100G of data delivered. Microsoft became an early adopter and used the modules to build a mesh of metro data centers1.

    Flash forward to 2020. Power per 100G dropped to 4W and distance exploded: 120k connections became possible with modules based on the ZR standard and 400k with the ZR+ standard. (An organization called OIF maintains the ZR standard. ZR+ is controlled by OpenROADM. Module makers often make both varieties. The main difference between the two is the amplifier: the DSPs, number of channels and form factors are the same.)??

    The market responded. 400ZR/ZR+ became adopted more rapidly than any other technology in optical history, according to Cignal AI principal analyst Scott Wilkinson.

    “It opened the floodgates to what you could do with coherent technology if you put it in the right form factor,” he said during a recent webinar.

Archives